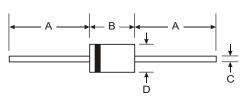
MUR120


1.0A SUPER-FAST RECTIFIER

Features

- **Glass Passivated Die Construction**
- Super-Fast Recovery Time For High Efficiency •
- Low Forward Voltage Drop and High Current . Capability
- Surge Overload Rating to 35A Peak •
- Ideally Suited for Automated Assembly •
- Plastic Material: UL Flammability • Classification Rating 94V-0

Mechanical Data

- Case: Molded Plastic •
- Terminals: Solder Plated Terminal -• Solderable per MIL-STD-202, Method 208
- Marking: R120 •
- Polarity: Cathode Band •
- Weight: 0.35 grams (approx.)
- Mounting Position: Any

DO-41 Plastic				
Dim	Min	Max		
Α	25.40			
В	4.06	5.21		
С	0.71	0.864		
D	2.00	2.72		
All Dimensions in mm				

Maximum Ratings and Electrical Characteristics @ $T_A = 25^{\circ}C$ unless otherwise specified

Single phase, half wave, 60Hz, resistive or inductive load. For capacitive load, derate current by 20%.

Characteristic	Symbol	MUR120	Unit
Peak Repetitive Reverse Voltage Working Peak Reverse Voltage DC Blocking Voltage	V _{RRM} V _{RWM} V _R	200	v
RMS Reverse Voltage	V _{R(RMS)}	141	V
Average Rectified Output Current @ T _T = 130°C	I _O	1.0	А
Non-Repetitive Peak Forward Surge Current 8.3ms Single half sine-wave Superimposed on Rated Load (JEDEC Method)	I _{FSM}	35	А
Forward Voltage	VFM	0.875 0.710	V
Peak Reverse Current@ $T_A = 25^{\circ}C$ at Rated DC Blocking Voltage@ $T_A = 150^{\circ}C$	I _{RM}	2.0 50	μA
Reverse Recovery Time (Note 2)	t _{rr}	25	ns
Forward Recovery Time (Note 3)		25	ns
Typical Junction Capacitance (Note 1)	Cj	45	pF
Typical Thermal Resistance, Junction to Ambient	R _{0JA}	72	K/W
Operating and Storage Temperature Range	T _j , T _{STG}	-65 to +175	°C

1. Measured at 1.0MHz and applied reverse voltage of 0V DC. Notes:

- 2. Measured with I_F = 0.5A, I_R = 1.0A, I_{rr} = 0.25A. See Figure 5. 3. Measured with I_F = 1.0A, di/dt = 100A/ μ s, Duty Cycle \leq 2.0%.

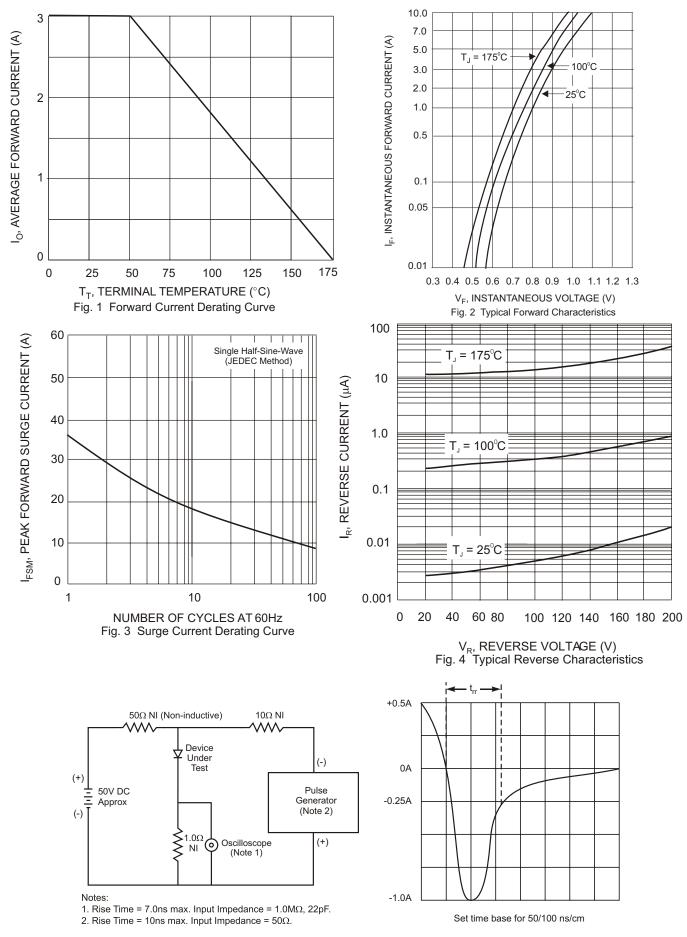


Fig. 5 Reverse Recovery Time Characteristic and Test Circuit

2 of 2