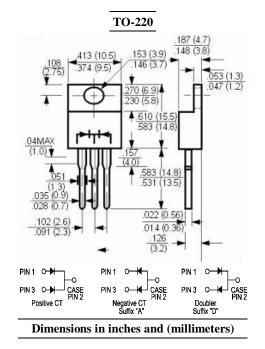
HER1601CT THRU HER1608CT GLASS PASSIVATED HIGH EFFICIENCY RECTIFIER

REVERSE VOLTAGE: FORWARD CURRENT:


50 to 1000 VOLTS 16.0 AMPERE

FEATURES

- Plastic package has Underwriters Laboratory Flammability Classification 94V-O ctilizing Flame Retardant Epoxy Molding Compound.
 Low power loss, high efficiency.
 Low forward voltage, high current capability
- \cdot High surge capacity.
- · Ultra fast recovery times, high voltage.
- · Exceeds environmental standards of MIL-S-19500/228

MECHANICAL DATA

Case: Molded plastic, TO-220 Epoxy: UL 94V-O rate flame retardant Terminals: Leads solderable per MIL-STD-202 method 208 guaranteed Polarity: As marked Mounting position: Any Weight: 0.08ounce, 2.24gram

Maximum Ratings and Electrical Characteristics

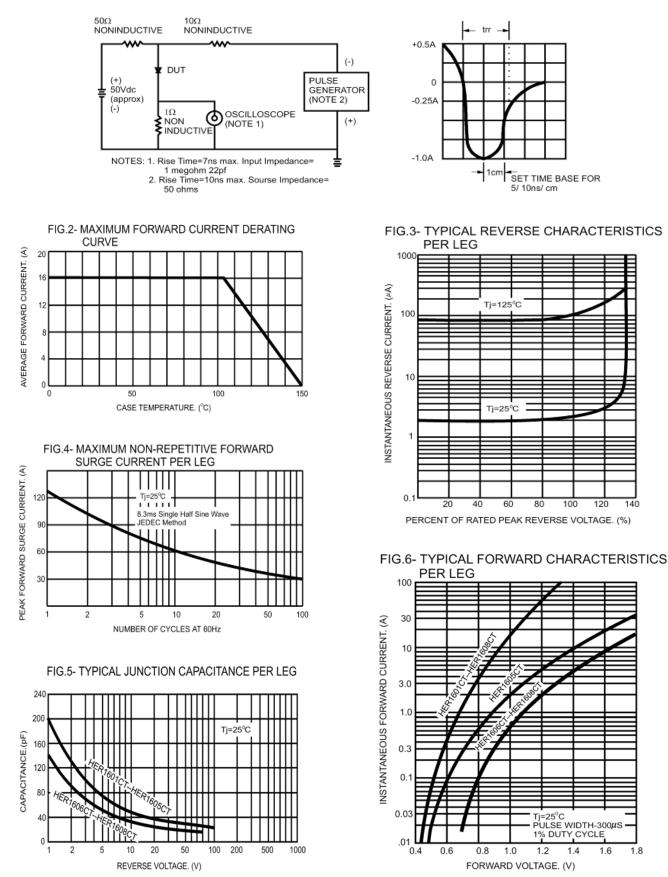
Ratings at 25°C ambient temperature unless otherwise specified. Single phase, half wave, $60H_Z$, resistive or inductive load.

For capacitive load, derate current by 20%.

	Symbols	HER1601CT	HER1602CT	HER1603CT	HER1604CT	HER1605CT	HER1606CT	HER1607CT	HER1608CT	Units
Maximum Recurrent Peak Reverse Voltage	V _{RRM}	50	100	200	300	400	600	800	1000	Volts
Maximum RMS Voltage	V _{RMS}	35	70	140	210	280	420	560	700	Volts
Maximum DC Blocking Voltage	V _{DC}	50	100	200	300	400	600	800	1000	Volts
Maximum Average Forward Rectified Current at T_{C} =100°C	I _(AV)	16.0								Amp
Peak Forward Surge Current,										
8.3ms single half-sine-wave	I _{FSM}	м 125								Amp
superimposed on rated load (JEDEC method)										
Maximum Forward Voltage at 8.0A and $T_A=25$ °C	V _F	1.0 1.3 1.7					Volts			
Maximum Reverse Current at T _A =25°C	т		10.0							
at Rated DC Blocking Voltage T _A =125°C	I _R	500								uAmp
Typical Junction Capacitance (Note 1)	CJ	80 50						pF		
Maximum Reverse Recovery Time (Note 2)	T _{RR}	50 80						nS		
Typical Thermal Resistance (Note 3)	$R_{\theta JC}$	3							°C/W	
Operating and Storage Temperature Range	T _J , Tstg	-55 to +150							ĉ	

NOTES:

1- Measured at 1 MH_Z and applied reverse voltage of 4.0 VDC.


2- Reverse Recovery Test Conditions: I_F =.5A, I_R =1A, I_{RR} =.25A.

3- Thermal Resistance from Junction to Case Per Leg Mounted on Heatsink.

RATINGS AND CHARACTERISTIC CURVES

FIG.1- REVERSE RECOVERY TIME CHARACTERISTIC AND TEST CIRCUIT DIAGRAM

