WUXI XUYANG ELECTRONICS CO., LTD.

M1 THRU M7 SURFACE MOUNT RECTIFIER

TECHNICAL SPECIFICATION

VOLTAGE: 50 TO 1000V CURRENT: 1.0A

FEATURES

- Ideal for surface mount pick and place application
- Low profile package
- Built-in strain relief
- High surge capability
- Open junction chip,silastic passivated
- High temperature soldering guaranteed: 260°C/10sec/at terminal

MECHANICAL DATA

- Terminal: Plated leads solderable per MIL-STD 202E, method 208C
- Case: Molded with UL-94 Class V-O
 - recognized flame retardant epoxy
- Polarity: Color band denotes cathode

MAXIMUM RATINGS AND ELECTRICAL CHARACTERISTICS

(Single-phase, half-wave, 60Hz, resistive or inductive load rating at 25°C, unless otherwise stated, for capacitive load, derate current by 20%)

SYMBOL V _{RRM}	M1 50	M2	М3	Μ4	M5	M6	M7	UNITS
	50							
V	00	100	200	400	600	800	1000	V
V _{RMS}	35	70	140	280	420	560	700	V
V _{DC}	50	100	200	400	600	800	1000	V
I _{F(AV)}	1.0						А	
I _{FSM}	30						А	
V _F	1.1						V	
	5.0							μA
IR	200							μA
CJ	15						pF	
R _θ (ja)	27						°C/W	
T_{STG},T_{J}	-65 to +150						°C	
	$I_{F(AV)}$ I_{FSM} V_{F} I_{R} C_{J} $R_{\theta}(ja)$	$V_{DC} = 50$ $I_{F(AV)} = 10$ $V_{F} = 10$ $I_{R} = 10$ $C_{J} = 10$ $R_{\theta}(ja) = 10$		$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $

1.Measured at 1.0 MHz and applied voltage of $4.0V_{dc}$

2. Thermal resistance from junction to terminal mounted on 5x5mm copper pad area

http://www.china-diode.com

